20 research outputs found

    Stream differential equations: Specification formats and solution methods

    Get PDF
    Streams, or infinite sequences, are infinite objects of a very simple type, yet they have a rich theory partly due to their ubiquity in mathematics and computer science. Stream differential equations are a coinductive method for specifying streams and stream operations, and their theory has been developed in many papers over the past two decades. In this paper we present a survey of the many results in this area. Our focus is on the classification of different formats of stream differential equations, their solution methods, and the classes of streams they can define. Moreover, we describe in detail the connection between the so-called syntactic solution method and abstract GSOS

    Stream Differential Equations: Specification Formats and Solution Methods

    Get PDF
    Streams, or innite sequences, are innite objects of a very simple type, yet they have a rich theory partly due to their ubiquity in mathematics and computer science. Stream dierential equations are a coinductive method for specifying streams and stream operations, and their theory has been developed in many papers over the past two decades. In this paper we present a survey of the many results in this area. Our focus is on the classication of dierent formats of stream dierential equations, their solution methods, and the classes of streams they can dene. Moreover, we describe in detail the connection between the so-called syntactic solution method and abstract GSOS

    Neighbourhood contingency bisimulation

    Get PDF
    We introduce a notion of bisimulation for contingency logic interpreted on neighbourhood structures, characterise this logic as bisimulation-invariant fragment of modal logic and of first-order logic, and compare it with existing notions in the literature

    A final coalgebra for k-regular sequences

    Get PDF

    Newton series, coinductively

    Get PDF
    We present a comparative study of four product operators on weighted languages: (i) the convolution, (ii) the shue, (iii) the inltration, and (iv) the Hadamard product. Exploiting the fact that the set of weighted languages is a nal coalgebra, we use coinduction to prove that a classical operator from dierence calculus in mathematics: the Newton transform, generalises (from innite sequences) to weighted lan- guages. We show that the Newton transform is an isomorphism of rings that transforms the Hadamard product of two weighted languages into an inltration product, and we develop various representations for the Newton transform of a language, together with concrete calculation rules for computing them

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore